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The flexible-order, finite difference based fully nonlinear potential flow model described in
[H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water
waves, J. Eng. Math. 58 (2007) 211–228] is extended to three dimensions (3D). In order to
obtain an optimal scaling of the solution effort multigrid is employed to precondition a
GMRES iterative solution of the discretized Laplace problem. A robust multigrid method
based on Gauss–Seidel smoothing is found to require special treatment of the boundary
conditions along solid boundaries, and in particular on the sea bottom. A new discretiza-
tion scheme using one layer of grid points outside the fluid domain is presented and shown
to provide convergent solutions over the full physical and discrete parameter space of
interest. Linear analysis of the fundamental properties of the scheme with respect to accu-
racy, robustness and energy conservation are presented together with demonstrations of
grid independent iteration count and optimal scaling of the solution effort. Calculations
are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling prob-
lem which show good agreement with experimental measurements and other calculations
from the literature.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The goal of this work is a computational tool suitable for large scale simulation of nonlinear wave–wave, wave–bottom
and wave–structure interaction in the coastal and offshore environment. For the engineering problems that we have in
mind (e.g. coastal and offshore wind turbines, wave-power devices, ships, or offshore platforms) viscous effects are typi-
cally only important very close to solid boundaries and in regions where strong wave breaking occurs. Reynolds numbers
for these problems are typically on the order of 105 to 109 which makes a direct solution of the Navier–Stokes equations
out of the question. With Large Eddy Simulation (LES) or Reynolds averaged (RANS) turbulence modelling, domain sizes
are typically on the order of one wavelength at current levels of computational power. Our strategy is therefore to solve
the problem under the assumptions of a potential flow. In regions where viscous effects may be important, we will at-
tempt to model the physics as a surface forcing term on the otherwise potential flow and/or couple our potential flow
solver with a more refined viscous flow solver. In this paper however, we will only consider the solution of the potential
flow problem.

We discuss here a flexible-order, finite difference based solution of the fully nonlinear potential flow problem for waves
on a fluid of variable depth. The time-varying physical domain is mapped to a time-invariant boundary-fitted computational
domain to obtain time-constant discrete differential operators weighted by time-dependent coefficients. The application of
this basic technique is widespread, and its use for the simulation of unsteady free surface flows goes back at least three
. All rights reserved.
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decades [10]. Related applications were later described in [4,1,5,14,2]. In principle, this approach can be applied to a Lagrang-
ian or semi-Lagrangian description of the flow which allows for overturning waves. In practice however, most implementa-
tions are based on an Eulerian description of the flow which limits the resultant model to free surface shapes which are a
single-valued function of the horizontal coordinate. This is mainly motivated by computational efficiency issues and justified
by our focus on the modelling of waves that are not overturning. In line with the strategy outlined above, we intend to model
wave breaking by adding dissipative terms on the free surface along the lines proposed for example in [7] or [22]. In this
context, it may be more appropriate to solve the Euler equations rather than a pure potential flow. This is a straightforward
extension of the current method where the Laplace solver becomes a Poisson solver, and the full 3D velocity field is time-
stepped instead of just the free surface potential. For a broader discussion of the general topic of numerical solution of free
surface flows we refer to reviews in [21,19,12,6].

Having chosen to solve the full 3D potential flow problem directly as stated, the remaining issues are purely numerical, i.e.
how accurately and efficiently can we solve the problem? Ten years ago, a multigrid solution was developed [14] to the sec-
ond-order discretization of the problem on a uniform grid. More recently, this approach was modified in [2] to allow arbi-
trary order finite difference schemes as well as non-uniform grid spacing. A significant advantage was found for high-order
schemes on a vertically clustered grid relative to second-order schemes on a uniform grid. This should actually not be sur-
prising given the exponential decay of the wave motion in the vertical, and the fact that the advantage of using high-order
schemes for solving this problem was pointed out 30 years ago in [10]. Instead of using multigrid, the resultant sparse linear
system of equations was solved in [2] using the Generalized Minimum Residual (GMRES) method [16], preconditioned by a
direct solution of the linear (time-invariant) second-order discretized system matrix. This led to optimal scaling of the solu-
tion effort in two dimensions (2D).

In this paper, we extend the method described in [2] to 3D. In 3D, a direct solution of the preconditioning problem leads
to a super-linear scaling of the solution effort with increasing problem size. Using multigrid to solve the preconditioning
problem, however, we show that the solution retains an optimal scaling for 3D problems. The motivation for using multigrid
only for the preconditioning step is that the preconditioning matrix is time-constant and thus the multigrid operators need
only be determined once during the initial set-up, which increases the efficiency of the subsequent solve steps. This strategy
has proved to be more efficient and robust than applying multigrid to the full high-order, nonlinear system. The use of just
one multigrid F-cycle in preconditioning is found to be most effective, providing a nearly equal distribution of effort between
the matrix–vector product and the preconditioning. The performance of just one V- or W-cycle is comparable however. Aver-
age iteration counts are typically less than 10 to satisfy a relative residual tolerance of 10�6. At this stage, the cross-over point
where multigrid becomes faster than a direct solution of the preconditioning step is found to be approximately n ¼ 105 total
grid points. In general, the relative efficiency of the two strategies, measured by the resultant average iteration count, is
problem dependent and will change this number.

It is well known that the multigrid solution of the Laplace problem using Gauss–Seidel smoothers is sensitive to the direct
introduction of Neumann-type boundary equations, e.g. at the bottom, and particularly on anisotropic grids. This seems to be
primarily due to the resultant reduction of diagonal dominance in the matrix. Vertical line smoothing instead of point
smoothing can help the situation, but in our experience all Gauss–Seidel schemes fail to converge on highly anisotropic grids.
Here we introduce an alternative method for satisfying the boundary conditions along solid boundaries by introducing a set
of computational points outside of the fluid domain. Derivatives at the boundary are then expressed including these ‘ghost’
points, and used to satisfy the impermeability condition at the boundary. Solving the boundary condition equations explic-
itly allows the ghost point contributions to be eliminated from the Laplace equation at the boundary, thus satisfying both the
Laplace equation and the boundary condition at the same time. This modified system is found to be convergent under all
forms of Gauss–Seidel iteration for all practically relevant values of boundary slope, relative water depth, and grid
anisotropy.

While it is important to have an optimal scaling of the computational effort to achieve an efficient numerical method,
perhaps equally important is to ensure that the required Random Access Memory (RAM) scales linearly with problem size.
In this respect the multigrid method is even more advantageous over a direct solution, as all matrix operations are carried
out explicitly and can thus be done using only local operations. Such a matrix-free implementation leads to minimal memory
requirements and optimal scaling of the memory use, thus allowing larger problems to be treated. The algorithms are also
well suited to parallelization and this is the topic of ongoing work.

The remainder of the paper is organized as follows. In Section 2, the formulation of the exact potential flow wave problem
is reviewed. The numerical solution is described in Section 3 including the new method of imposing boundary conditions
along solid boundaries. Section 3.3 describes the solution of the preconditioning problem using multigrid. An analysis of
the spectral radius of the system under Gauss–Seidel iteration, combined with numerical calculations, is used to demon-
strate the improved robustness of the new boundary condition scheme. Here we also demonstrate the optimal scaling of
the solution effort and memory use, to our knowledge for the first time. In Section 4, we establish the linear stability, accu-
racy and convergence properties of the method. Nonlinear stability and accuracy are also addressed and some guidelines
given. In Section 5, some 3D validation test cases are computed including standing waves, highly nonlinear periodic waves,
and the evolution of initially mildly nonlinear waves as they propagate over a focusing bar. These last calculations compare
well with experimental measurements and to other high-accuracy numerical results from the literature. Conclusions are
drawn in Section 6.
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2. Formulation of the problem

A Cartesian coordinate system is adopted with the xy-plane located at the still water level and the z-axis pointing up-
wards. The still water depth is given by hðxÞ with x ¼ ðx; yÞ the horizontal coordinate. The position of the free surface is de-
fined by z ¼ gðx; tÞ and the gravitational acceleration g ¼ 9:81 m2=s is assumed to be constant.

Assuming an inviscid fluid and an irrotational flow, the fluid velocity ðu;wÞ ¼ ðu;v ;wÞ ¼ ðr/; @z/Þ is defined by the gra-
dient of a scalar velocity potential /ðx; z; tÞ, where r ¼ ð@x; @yÞ is the horizontal gradient operator. The evolution of the free
surface is governed by the kinematic and dynamic boundary conditions
@tg ¼ �rg � r~/þ ~wð1þrg � rgÞ; ð1aÞ

@t
~/ ¼ �gg� 1

2
ðr~/ � r~/� ~w2ð1þrg � rgÞÞ; ð1bÞ
which are expressed in terms of the free surface quantities ~/ ¼ /ðx;g; tÞ and ~w ¼ @z/jz¼g. To find ~w and evolve these equa-
tions forward in time requires solving the Laplace equation in the fluid volume with a known ~/ and g, together with the
kinematic bottom boundary condition
/ ¼ ~/; z ¼ g; ð2aÞ
r2/þ @zz/ ¼ 0; �h 6 z < g; ð2bÞ
@z/þrh � r/ ¼ 0; z ¼ �h: ð2cÞ
At the structural boundaries of the domain, the flow field must be everywhere parallel to the boundary surfaces, implying
that the velocity potential / must satisfy the no-normal flow condition (expressed here in physical coordinates)
n � ðr; @zÞ/ ¼ 0; ðx; zÞ 2 @X; ð3Þ
where n ¼ ðnx;ny;nzÞ is an outward pointing normal vector to the solid boundary surfaces @X. At present, we assume that all
structural boundaries except the fluid bottom are vertical and aligned with one of the horizontal coordinates, but the exten-
sion to general boundaries is implementation-wise conceptually identical to the treatment of the bottom boundary and is in
progress.

Since the free surface is a time-dependent moving boundary with an a priori unknown position, it is convenient to make a
change of variable in the vertical which maps the solution to a time-invariant domain using the following (non-conformal)
r-coordinate transformation
r � zþ hðxÞ
gðx; tÞ þ hðxÞ �

zþ hðxÞ
dðx; tÞ : ð4Þ
The Laplace problem in the transformed computational domain becomes
U ¼ ~/; r ¼ 1; ð5aÞ
r2Uþr2rð@rUÞ þ 2rr � rð@rUÞ þ ðrr � rrþ ð@zrÞ2Þ@rrU ¼ 0; 0 6 r < 1; ð5bÞ
ð@zrþrh � rrÞð@rUÞ þ rh � rU ¼ 0; r ¼ 0; ð5cÞ
where Uðx;r; tÞ ¼ /ðx; z; tÞ and the derivatives of the coordinate r can be written as
rr ¼ 1� r
d
rh� r

d
rg; ð6aÞ

r2r ¼ 1� r
d

r2h�rh � rh
d

� �
� r

d
r2g�rg � rg

d

� �
� 1� 2r

d2 rh � rg�rr
d
� ðrhþrgÞ; ð6bÞ

@zr ¼
1
d
: ð6cÞ
Note that all of these nonlinear coefficients can be determined from the known free surface and bottom positions.
In the r-coordinates, the structural boundary conditions takes the form
n � ðr; @zr@rÞ/ ¼ 0; ðx;rÞ 2 @X: ð7Þ
Having obtained a solution for the function U in the r-domain, the physical internal flow kinematics are obtained via the
chain rule
uðx; zÞ ¼ r/ðx; zÞ ¼ rUðx;rÞ þ rr@rUðx;rÞ; ð8aÞ
wðx; zÞ ¼ @z/ðx; zÞ ¼ @rUðx;rÞ@zr: ð8bÞ
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3. Numerical solution

A method of lines approach is used for the discretization of the continuous problem stated above. For the time-integration
of the free surface conditions (1) the classical explicit four-stage, fourth-order Runge–Kutta scheme (see e.g. [11]) is em-
ployed. For the spatial discretization, a grid of ðNx;NyÞ points is defined along the horizontal xy-axes at which the free surface
variables g and ~/ are to be evolved. Spatial derivatives are replaced by the discrete counterparts using the finite difference
method and nonlinear terms are treated by direct product approximations at the collocation points. At the structural bound-
aries of the domain, i.e. at the bottom and wall sides, Neumann (specified normal component of velocity) conditions, (5c) and
(7), are imposed as described below.

For the solution of the transformed Laplace problem (5), Nr points are defined in the vertical below each horizontal free
surface grid point, arbitrarily spaced in 0 6 r 6 1. The grid is thus structured, but with one arbitrarily spaced set of values
along each of the coordinate directions. Choosing r nearby points, allows order ðr � 1Þ finite difference schemes for the 1D
first and second derivatives in ðx; y;rÞ to be developed in the standard way using Taylor series expansion (see e.g. [9]) at each
of the x; y and r positions on the grid.

By keeping the order of the spatial discretization schemes flexible, two convergence strategies are available, namely, h-
and p-adaptivity where either the spatial resolution or the order of the scheme is increased, respectively.

3.1. Finite difference discretizations

For the one-dimensional first- and second-derivatives in x, y and r, r ¼ aþ bþ 1 points are used where a indicates the
number of points in the positive coordinate direction, and b the number of points in the negative direction from the point
of interest. For interior points all derivatives are centrally discretized with a ¼ b in each coordinate direction. For points
where a centered stencil would reach beyond the last computational point in the domain, the stencils become off-centered
to use only the available grid points. In [14,2], computational points were distributed along the solid boundaries and inside
the fluid domain, and each boundary point gave rise to one equation for imposing the boundary condition. Thus, the Laplace
equation at the boundary point was exchanged for the boundary condition. The numerical evidence suggests that this ex-
change introduces instability (in particular, divergence of multigrid) which is accentuated by shallow water physics, large
bottom gradients, and high anisotropy in the grid. A possible explanation for this behavior is suggested in Section 3.2. Here
we develop a more robust solution by ensuring the satisfaction of both the Laplace equation and the boundary condition at
all boundary points. This is done by introducing additional fictitious computational points outside the physical domain, and
using the associated extra degrees of freedom to impose both equations at the solid boundaries. This is intuitively a nice fea-
ture, and it turns out to be critical for obtaining robust multigrid solutions.

In the special case of a vertical wall aligned with one of the horizontal axes, we simply take g and / to be symmetric about
the boundary and reflect the centered finite difference schemes for an even function to eliminate the ghost points from the
system. For boundaries not aligned with the coordinates such as the bottom boundary, only one layer of ghost points is intro-
duced and it is used to satisfy the boundary condition, while the Laplace equation is imposed using the equations corre-
sponding to the boundary points themselves. This is discussed in more detail in Section 3.2. Mixed xr- and yr-
derivatives are obtained by successive application of 1D schemes. In the case of a direct solution where the matrix must
be formed, these operators are obtained by multiplication of the discrete 1D matrix operators, which gives 2D stencils of
at most r2 points. In this way, all derivatives are formally accurate to OðDxr�1

� Þ where Dx� is the maximum grid spacing in
either x, y or r. This approach also leads naturally to a stable treatment of internal corners and allows the introduction of
fixed bottom-mounted structures, which is the topic of a follow-up paper.

This discretization procedure gives a rank n ¼ NxNyNz linear system of equations
AU ¼ b; ð9Þ
where A is the coefficient matrix, U a vector of unknown U’s at each grid point at the given instant of time and b a vector
holding zeros, except at those points corresponding to inhomogeneous boundary conditions.

For the solution of (9) we employ the GMRES method preconditioned on the left by the linearized second-order accurate
version of the coefficient matrix A which we refer to as A2. This matrix is time-constant and has a relatively simple banded
structure. One initial LU-factorization (after re-ordering to minimize fill-in) and subsequent back-substitution for each pre-
conditioning step is effective up to a point, but for large problems the fill-in becomes excessive and this strategy leads to a
super-linear scaling of both CPU time and RAM memory use. To retain an optimal scaling in 3D, we replace the direct solu-
tion of the preconditioning step with a multigrid solver as described in Section 3.3. First however, we discuss in more detail
the new discretization scheme along solid boundaries.

3.2. Detailed discussion of the kinematic bottom boundary condition

The discretization schemes described above provide two strategies for imposing the kinematic boundary condition along
a solid boundary: (1) replace the Laplace equation at the boundary points with the kinematic boundary condition (as was
done in [14] and at the bottom in [2]). We will refer to this strategy as BC. (2) Impose both the Laplace equation and the
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boundary condition at all boundary points by adding fictitious ghost points outside of the fluid boundaries. We will refer to
this strategy as BC + LAPLACE.

These two strategies are applied to the bottom boundary condition as pictured in Fig. 1. For illustration, consider the 2D
case with a uniform grid spacing ðDx;DrÞ and second-order finite difference operators. Let Ujk represent the discrete value of
Uðx;r; tÞ at grid location ðxj;rkÞ and take the ordering of the grid points to follow the coordinate directions. For strategy BC
shown in Fig. 1(a), j; k corresponds to the bottom boundary point itself and the bottom boundary condition takes the form
Fig. 1.
point o

Fig. 2.
at the fi
aj

2Dr
ð�3Uj;k þ 4Uj;kþ1 �Uj;kþ2Þ þ

bj

2Dx
ðUjþ1;k �Uj�1;kÞ ¼ 0; ð10Þ
where aj ¼ 1
hðxjÞþgðxj ;tÞ

ð1þ b2
j Þ and bj ¼ @xhjx¼xj

are the factors appearing in (5c) and the classical uniform grid, second-order
schemes have been applied. For strategy BC + LAPLACE shown in Fig. 1(b), j; k corresponds to the ghost point below the bot-
tom boundary which is obtained by reflecting the next grid point above the bottom about r ¼ 0. In this case, the bottom
boundary condition takes the form
aj

2Dr
ðUj;kþ2 �Uj;kÞ þ

bj

2Dx
ðUjþ1;kþ1 �Uj�1;kþ1Þ ¼ 0 ð11Þ
with the coefficients evaluated at r ¼ 0. For strategy BC, the Laplace equation (5b) is imposed one grid point above the bot-
tom boundary as shown in Fig. 2(a). As the expressions are rather lengthy, we avoid writing them down here, but note that
the four corner points of the stencil have been introduced by the mixed r� x derivative. For strategy BC + LAPLACE, the
equation corresponding to the grid point on the bottom boundary itself is the Laplace equation, and the stencil for this equa-
tion is shown in Fig. 2(b). Eq. (11) is now used to solve explicitly for the ghost point values in terms of their neighbors inside
the fluid domain. Their contributions can then be eliminated from the expressions for the Laplace equation at the boundary
points to arrive at the resulting stencil shown in Fig. 2(c). For the linear case on a constant depth the Laplace equation, after
the elimination procedure, simplifies to
1
Dx2 Uj�1;k � 2

1
Dx2 þ

1

h2Dr2

� �
Uj;k þ

2

h2Dr2
Uj;kþ1 þ

1
Dx2 Ujþ1;k ¼ 0; ð12Þ
where the index j; k corresponds to the filled dot in Fig. 2(c).
This can be immediately identified as the Laplace equation with the boundary condition built in. Thus, this strategy makes

the boundary equations essentially the same as the interior point equations and the resultant matrix becomes mildly diag-
onally dominant in the limit of a linear problem on a constant depth. Gauss–Seidel iteration is thus guaranteed to be con-
vergent in this limit [18]. Although a non-zero bottom slope will work to reduce the diagonal dominance in the system, we
a b

Implementation of the bottom boundary condition along the thick black line. Strategy (a) BC and (b) BC + LAPLACE. The square indicates a ghost
utside the fluid domain and the equation is imposed at the filled circle.

a b c

Implementation of the Laplace equation near the boundary (thick black line). Square points are below the fluid bottom and the equation is imposed
lled circle. (a) Strategy BC. (b) Strategy BC + LAPLACE. (c) Strategy BC + LAPLACE after elimination of the ghost points.
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have so far not found any divergent examples regardless of the physical parameters and/or the grid anisotropy, as is dis-
cussed further in Section 3.3.2. On the other hand, the exchange of the Laplace equation for (10), apparently reduces the diag-
onal dominance of the matrix to such a degree that Gauss–Seidel iteration becomes divergent, even at relatively small values
of bottom slope and/or grid anisotropy.

3.3. Multigrid solution of the preconditioning step

This section outlines our left preconditioned GMRES iterative solution of the Laplace problem which is written symbol-
ically as
A�1
2 fAU ¼ bg; ð13Þ
where U is the solution vector, b the right hand side, A the nonlinear flexible-order system matrix and A2 the linearized, sec-
ond-order accurate version of the system matrix used for preconditioning. Starting with the initial guess of the solution U0

(obtained using linear extrapolation from the previous two time steps on first and third Runge–Kutta stages and otherwise
just the last computed solution) the initial residual is computed, r0 ¼ AU0 � b. This is preconditioned by solving the system
A2u0 ¼ r0. The GMRES procedure then builds up the Krylov subspace to drive the residual down to the convergence tolerance
and provide a correction to the initial guess. This process requires one preconditioning operation per iteration solving a sys-
tem of the form
A2um ¼ rm; ð14Þ
where m indicates the iteration number.
We apply geometric multigrid [3,18] to solve this preconditioning problem with an initial zero guess for u0. Multigrid

exploits the smoothing properties of the basic stationary iterative methods which efficiently remove the high-frequency er-
rors but not the low-frequency ones. Transferring low-frequency error to a coarser grid makes it higher frequency and re-
stores the effectiveness of the basic iterative method.

A set of K increasingly finer grids fGk : Gk 2 Xr; k ¼ 1;2; . . . ;Kg is thus defined, where k denotes the grid level, K the finest
grid and Xr ¼ ½0; Lx� � ½0; Ly� � ½0;1� the computational domain. To move quantities back and forth between the grids, prolon-
gation and restriction operators are defined as
Pk : uk�1 ! uk; Rk : uk ! uk�1; k ¼ 2; . . . ;K: ð15Þ
Each grid level must also have a matrix operator Ak
2. The two classical approaches for determining the coarse grid operator Ak

2

are: the Direct Coarse grid Approximation (DCA) where the operator is determined on the coarse grid in exactly the same
way as is done on the finest grid; and the Galerkin Coarse grid Approximation (GCA) where the coarse grid operator is deter-
mined as the product of the fine grid operators Ak�1

2 ¼ RkAk
2Pk [18]. We have tried both methods and not found any significant

difference, we thus use DCA since it is slightly more efficient and straightforward to implement matrix-free.

3.3.1. Restriction and prolongation operators
The restriction to each coarse grid point is determined in d dimensions by tensor products of the one-dimensional restric-

tion operators for each coordinate direction. Discrete one-dimensional first-order full-weighting operators are derived from
the discrete version of the volume-preserving condition
Z
Xk

f

Ukðx;rÞdXk ¼
Z

Xk
f

RkUkðx;rÞdXk�1 ð16Þ
for Xk
f ¼ ½xk

i � Dxk
1; xþ Dxk

2� � ½yk
j � Dyk

1; y
k
j þ Dyk

2� � ½rk
k � Drk

1;rk
k þ Drk

2� on the fine grid, which accommodates the use of un-
even grids. The trapezoidal rule is used to approximate the left hand side of the integral and the midpoint rule for the right
hand side.

The discrete full-weighting operators are modified at boundary points by imposing the boundary conditions using the
same ghost point method that was used for the spatial discretization of the governing equations in Section 3.2. For restric-
tions at the bottom boundary we approximate the kinematic bottom boundary condition with a homogeneous Neumann
boundary condition @rU ¼ 0. This approximation is only strictly correct for a flat bottom, but it is convenient in terms of
implementation and does not appear to effect the overall performance of the method.

Alternatively, we could employ cubic nine-point full-weighting restriction stencils independently of the choice of coars-
ening strategy. However, it turns out that by the approach outlined above we minimize the size of the restriction stencil and
thereby the work load of a multigrid cycle, e.g. for semi-coarsening in one direction we then obtain a three-point full-weight-
ing restriction stencil.

The prolongation operators are determined using tri-linear interpolation from the coarse to the fine grid where standard
coarsening is employed and linear interpolation where semi-coarsening is employed. Thus, if the fine and coarse grid points
coincide along one of the coordinate directions, then direct injection is employed in that coordinate.
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3.3.2. Residual relaxation schemes
Gauss–Seidel has been applied as the basic iterative scheme (the smoother) on which the multigrid solution is built.

Gauss–Seidel is a stationary iterative method which can be written in the form
Fig. 3.
imposin
for the
maxim
xmþ1 ¼ M�1ðNxm þ bÞ; ð17Þ
where xm is the approximate solution at iteration number m and the matrix has been split into A ¼ M � N. M here is a lower
non-singular triangular matrix for point methods ðMij ¼ 0; 8i > jÞ and a lower block triangular matrix for block methods
(Mij ¼ 0; 8i > jþ s, s a parameter dependent on the method), while N is an upper triangular matrix [18]. The iterative scheme
will be (asymptotically) convergent if the spectral radius of the iteration matrix fulfills qðM�1NÞ < 1, where qðGÞ is the max-
imum absolute value of the eigenvalues of G.

A discrete parameter study has been carried out to investigate the dependence of the spectral radius of the iteration ma-
trix qðM�1NÞ on discrete anisotropy and bottom gradient. We consider the point-wise Gauss–Seidel method based on for-
ward vertical ordering of the unknowns (i.e. column wise from bottom left to top right). Since the spectral radius of the
iteration matrix determines the convergence rate for the slowest error mode, it determines the asymptotic convergence rate
of the method. The tests are carried out in two spatial dimensions by defining the bottom function as
hðxÞ ¼ h0 þ 0:5a tanh 5:3
x� x0

b

� �
: ð18Þ
Using this function we can vary the maximum normalized gradient L max jhx=hj. By choosing b ¼ 0:5L (measure of shoal
width), where L is the domain length, and with jd0ðxÞj chosen, we can determine a (the magnitude of the gradient) from
the expression max jd0ðxÞj ¼ 2:65ja=bj.

In Fig. 3, we have visualized the results for parameter studies on uniform and vertically non-uniform grids, respectively
for the BC in sub-figures (a) and (c), and for the BC + LAPLACE strategies in the sub-figures (b) and (d). For the BC formulation
the discretizations may be divergent if the discrete anisotropy is very large or if large relative bottom gradients are experi-
enced. In general, the convergence rate of the smoother is fastest for flat bottoms, small discrete anisotropy ðDx � DrÞ and
relatively deep water. If the discrete BC + LAPLACE formulation is used we have not been able to find any divergent schemes
for any choices of parameters, nor have we experienced divergence problems in practical simulations for much larger prob-
lems, e.g. see the simulations in Section 5.
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Parameter studies of the spectral radius of the point-wise Gauss–Seidel iteration matrix qðM�1NÞ with A2 ¼ M � N for the two different ways of
g the kinematic bottom boundary conditions. Either uniform (top row) or vertically clustered grids (bottom row) are used. In sub-figures (a) and (c)
BC and (b) and (d) for the BC + LAPLACE the variation in spectral radius is given as a function of discrete anisotropy Dr=Dx and dimensionless

um bottom gradient max jhxj=h0. Large spectral radius are visualized as q ¼ 1:04.
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Based on the results in Fig. 3(a), we conclude that imposing the kinematic bottom boundary condition by exchanging the
discrete Laplace-type equation at the boundary can result in a numerical scheme which is not robust. Instead, to achieve a
robust Gauss–Seidel iterative scheme, the spatial boundary conditions should be imposed together with the Laplace equa-
tions at all spatial boundaries. Although these results are only for the point Gauss–Seidel method, we have also tested ver-
tical line smoothing and other orderings of the points/lines, but not found significant differences in the overall performance
or robustness [15]. Thus, we use point Gauss–Seidel in the following.

We note that this study seems to contradict the conclusions in [14] where it was concluded that the point Gauss–Seidel
method was divergent for some of their shallow water test cases, but that the problem was fixed by switching to vertical line
smoothing. Although they do not mention the implementation details in the paper, we speculate that the explanation for this
lies in the imposition of the horizontal boundary conditions which leads to stringent stability conditions in shallow water as
discussed in Section 4.

3.3.3. Grid coarsening strategy
In the present work, we have only employed nested grids as this is sufficient for demonstrating the efficiency of the meth-

od. However, the extension to allow for fine grids allowing for arbitrary combinations of Nx and Ny is straightforward. Hence,
the number of points in each coordinate direction must be odd on all grids except the coarsest grid, Nk

i ¼
2ðNk�1

i � 1Þ þ 1; k ¼ 2; . . . ;K; i ¼ x; y;r, where k ¼ 1 corresponds to the coarsest grid. The advantage of this approach is that
we can employ standard coarsening or semi-coarsening. Since sufficient accuracy is generally obtained by using Oð10Þ grid
points in the vertical, for practical applications of the model there will typically be many more points in the horizontal direc-
tions than in the vertical. The spatial resolution will thus be dominated by the plane directions and therefore strongly cou-
pled along these, and we can expect the discrete equation system to become anisotropic. This can lead to poor convergence
rates for the smoothers, and therefore semi-coarsening is employed to improve the convergence rate of the smoother on the
coarser grids.

The current grid coarsening strategy is based on a combined semi- and standard-coarsening strategy. Semi-coarsening is
done independently along each horizontal coordinate until the spatial resolution (measured by the number of points)
matches the spatial resolution in the vertical. Thereafter, standard-coarsening is employed until the coarsest grid is reached.
The coarsest grid ðk ¼ 1Þ should be a grid where the solution effort for the direct solution of the linear system is negligible
compared to the overall effort.

3.3.4. Multigrid solution procedure
Following the work described in [18] we outline the complete multigrid solution procedure. The pseudo-code for one

multigrid solve step returning uK
i ¼ ðA

K
2 Þ
�1rK

i in maxiter iterations with AK
2 the fine grid preconditioner and rK

i the fine grid
residual for the ith GMRES iteration is as follows

uK
i;m ¼ 0; m ¼ 0;

WHILE m < maxiter DO
uK

i;mþ1 ¼MGCYCðK; c;uK
i;m;A

K
2 ; r

K
i ;v1;v2Þ

m ¼ mþ 1
END

Here ðv1;v2Þ are the numbers of pre- and post-smoothing operations per cycle, c is the cycle index indicating how many
times the recursive multigrid solver MGCYC is called at the kth grid, k ¼ K; . . . ;1. For example, c ¼ 1 corresponds to so-called
V-cycles and c ¼ 2 to W-cycles. Note that the convergence criterion is given solely in terms of the maximum number of iter-
ations. Since multigrid is only used for the preconditioning step, we are not concerned with a strict convergence of this solu-
tion, but only in maximizing the efficiency of the GMRES iterative solution to the full nonlinear problem. We can thus avoid
computation of the fine grid defect dK

i;mþ1 ¼ rK
i;mþ1 � AK

2 uK
i;mþ1 and save one relatively expensive matrix–vector product per

cycle.
The pseudo-code for the recursive multigrid cycle is given by

recursive function uk
mþ1 ¼MGCYCðk; c;uk

m;A
k
; rk;v1;v2Þ

IF k ¼ 1 THEN
uk

mþ1 ¼ ðA
�1Þkrk

m

ELSE
ûk

m ¼ SMOOTHv1 ðuk
m;A

k
; rkÞ

dk
m ¼ rk � Akûk

m

dk�1
m ¼ Rkdk

m

duk
m ¼MGCYCðk� 1; c;0;Ak�1

; dk�1
m ;v1; v2Þ

ûk
m ¼ ûk

m þ Pkduk
m

uk
mþ1 ¼ SMOOTHv2 ðûk

m;A
k
; rkÞ

END
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where SMOOTHv is a function that smooths the solution v times, e.g. using a point-wise Gauss–Seidel method. Only the V-
cycle has been given here for brevity.

3.3.5. Model performance
The performance of the algorithm is governed by the discrete properties of the model and the physical properties of the

simulated problem. There are five dimensionless quantities which can be used to describe the dynamical behavior of the
algorithm and influence the amount of computational work. The choice of discretization can be characterized by the Courant
number and the discrete anisotropy. The physics can be characterized by the dimensionless depth, the nonlinearity and rel-
ative bed slope. In addition the numerical precision and specified error tolerances for the iterative GMRES solution procedure
are important parameters.

The performance of the algorithm has been tested using a sequential implementation in Fortran 90 for a three-dimen-
sional test case where the initial condition on a square domain ðx; yÞ 2 ½0;1�2 is a two-dimensional sinusoidal free surface
elevation and no kinetic energy, above a bottom that varies from shallow to deep water. Thus, all features of the model
are tested. The BC + LAPLACE strategy has been used to impose the kinematic bottom constraint with a vertical clustering
of the nodes toward the free surface using the symmetric half of the Chebyshev–Gauss–Lobatto grid distribution ri ¼
sinðpi=ð2ðNz � 1ÞÞÞ for i ¼ 0; . . . ;Nz � 1. The number of nodes in the vertical has been kept fixed at Nz ¼ 10 with one being
a ghost point r�1 ¼ r1. Sixth-order finite difference operators have been applied.

We seek to determine the optimal multigrid preconditioning strategy in terms of the type and number of multigrid cycles
and pre- and post-smoothing operations and possibly the number of grids. We have chosen a fine grid of size 129� 129� 10
and varied the other parameters. The relative and absolute error tolerances in the SPARSKIT GMRES routine are in general set
to be atol = 100 � rtol with rtol = 10�6 unless otherwise specified. These tolerances are used with the following stopping
criteria kRk 6 rtolkbk þ atol where R is the residual vector computed for the linear system Ax ¼ b.

Result from tests with different numbers of multigrid cycles and numbers of pre- and post-smoothing operations for the
multigrid preconditioner are shown in Table 1. The number of GMRES iterations varies with the number of smoothing oper-
ations, and so does the efficiency. Increasing the number of smoothing operations improves the convergence rate of the mul-
tigrid cycles and reduces the number of GMRES iterations toward the iteration count for the direct solution of the
preconditioner. However, since every smoothing effectively corresponds to a matrix–vector product, doing one extra
smoothing has to be compensated for by a drop in the GMRES iteration count in order to pay off. From the results in Table
1, we conclude that one multigrid cycle with one pre- and post-smoothing is near-optimal. For the present test case a single
F-cycle with one pre- and one post-smoothing is found to be optimal and therefore this strategy is adopted in the following.

The efficiency of the multigrid preconditioning step can be measured by the average number of iterations which is lin-
early proportional to the computational work. The average number of iterations for a fixed Courant number Cr ¼ 0:5 for dif-
ferent spatial resolution is investigated for strongly nonlinear streamfunction waves with nonlinearity H=L ¼ 90%ðH=LÞmax in
both shallow ðkh ¼ 0:5Þ and deep ðkh ¼ 2pÞ water. The computational domain is chosen such that the waves propagate in
parallel with the longitudinal direction of a wave tank with longitudinal length Ltank ¼ 6Lwave and width Wtank ¼
Lwave ¼ 1 m. The width is resolved using seven grid points in tests. Fig. 4 shows the average number of iterations determined
using 100 time increments to solve the same test case described above. This is done for increasing numbers of grid points in
the longitudinal direction and for different formal orders of the finite difference operators. On average we can expect iter-
ation counts between 2 and 5. The highest iterations counts are experienced in shallow water for steep nonlinear waves,
Table 1
Average iteration count per RK4 stage for different multigrid-preconditioning strategies on a fixed grid. Vertical clustering has been employed with a ghost
point layer for kinematic bottom boundary conditions. One hundred time steps with Dt ¼ 0:0039. Notation: MG-1V(2, 1) indicates one V-cycle with two pre-
and one post-smoothing, etc.

Preconditioning method Grid Total grids Average iteration CPU (s)

LU 129� 129� 10 1 1.90 239

MG-1V(1,1) 129� 129� 10 5 2.13 237
MG-2V(1,1) 129� 129� 10 5 1.91 404
MG-1V(2,1) 129� 129� 10 5 2.09 342
MG-1V(1,2) 129� 129� 10 5 2.09 264
MG-1V(2,2) 129� 129� 10 5 2.08 419

MG-1W(1,1) 129� 129� 10 5 1.93 233
MG-2W(1,1) 129� 129� 10 5 1.90 453
MG-1W(2,1) 129� 129� 10 5 1.91 323
MG-1W(1,2) 129� 129� 10 5 1.90 303
MG-1W(2,2) 129� 129� 10 5 1.90 402

MG-1F(1,1) 129� 129� 10 5 1.93 231
MG-2F(1,1) 129� 129� 10 5 1.90 381
MG-1F(2,1) 129� 129� 10 5 1.92 348
MG-1F(1,2) 129� 129� 10 5 1.91 324
MG-1F(2,2) 129� 129� 10 5 1.92 316
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where high spatial resolution accuracy is required to resolve the wave profile accurately. In shallow water, the average iter-
ation count has a tendency to decrease with increasing n since the discrete anisotropy dr=dx decreases under refinement in
both the plane and vertical directions when a uniform grid distribution is employed in the horizontal and a clustered grid in
the vertical. Thus, we have demonstrated that the iteration count is nearly independent of both n, the physics and the order
of the finite difference operators. The latter property makes it possible to adjust the order of the scheme to the accuracy that
is needed in order to balance the total amount of computational work.

To test the efficiency of the GMRES-MG solution strategy a test is carried out where the Courant number Cr ¼ 0:5 is fixed
and the temporal integration is carried out over 100 time steps (time span different for each run). In Fig. 5, results are pre-
sented for two different solution strategies for the linear system, namely, a GMRES solver preconditioned with either MG-
1F(1,1) or with a full direct LU-factorization. The multigrid preconditioning strategy is the most efficient and achieves ideal
OðnÞ-scaling. This result is in contrast to the direct LU preconditioner which can be seen to scale super-linearly with n. Recall,
that in [2] ideal scaling was demonstrated for the direct LU preconditioner in two dimensions where the bandwidth of the
sparse coefficient matrix can be kept small and therefore solved efficiently. The break-even point where the MG precondi-
tioning becomes more efficient than the direct LU, was found to be approximately nBE ¼ 9 � 104. However, in actual calcula-
tions the break even point is dependent on the problem and the relative efficiency of the two different preconditioning
strategies, which can be estimated using the ratio between the average iteration counts for each strategy for a given problem.

4. Stability, accuracy and convergence

The stability, accuracy and convergence properties of the model were analyzed in [2, Section 4]. This analysis was done
using the 2D linearized traveling wave solution on a constant depth with periodic lateral boundary conditions and strategy
BC applied to the bottom boundary condition. Here we extend this analysis to confirm that the new discretization strategy at
the lateral and bottom boundaries does not adversely affect the expected convergence and stability properties of the method.
The addition of a second horizontal dimension to the problem should not change anything in this respect but for complete-
ness we also present a 3D convergence test in Section 5.1 to verify that this is indeed the case.
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4.1. Stability

Following the discussion in [2], Section 4, we express the time-stepping problem in the form
Fig. 6.
@

@t
g
~/

� �
¼

0 J12

�g 0

� � g
~/

� �
; ð19Þ
where for the linear problem ~/ ¼ /ðx;0; tÞ. For a given discretization of the problem on a rectangle of length L and depth h we
can solve explicitly for the vertical free surface velocity to get
~w ¼ J12
~/; J12 ¼ D0

z A�1P0: ð20Þ
Here D0
z is the discrete matrix operator which takes the vertical derivative of / on z ¼ 0 and P0 is the matrix operator which

builds the right hand side vector b from the values of ~/ðxÞ. For small values of Nx and Nz, we can build the discrete matrix
operator J12 and hence the complete Jacobian matrix in (19). The largest magnitude of the eigenvalues of the Jacobian, in
combination with the stability region of a particular time-integration scheme, will then determine the stability of the
method.

The exact linear solution on a periodic domain is given by
gðx; tÞ ¼ H
2

cosðkx�xtÞ; x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kh

p
; ð21aÞ

/ðx; z; tÞ ¼ H
2

gx
k

cosh½kðzþ hÞ�
coshðkhÞ sinðkx�xtÞ: ð21bÞ
Thus for the continuous linear problem, we have
~w ¼ @/
@z

����
z¼0
¼ k tanhðkhÞ~/ ð22Þ
or in other words, J12 ¼ k tanhðkhÞ. The continuous eigenvalues of the Jacobian are thus simply the wave frequencies
	i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanhðkhÞ

p
.

Fig. 6 plots the maximum magnitude of the eigenvalues of the Jacobian for these two boundary condition strategies as
functions of the relative water depth kNh where L is the domain length, Dx ¼ L=ðNx � 1Þ, and the Nyquist wave number is
kN ¼ p=Dx. The eigenvalues have been normalized by the Nyquist frequency xN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gkN tanh knh

p
. This plot has been made

using Nx ¼ 17 and Nz ¼ 9, but the picture is qualitatively unchanged for different choices of the number of grid points. From
the plot it is clear that the two strategies lead to the same stability requirement in deep water but they are dramatically dif-
ferent in shallow water. The eigenvalues of the discrete system are purely imaginary, so stability under fourth-order Runge–
Kutta time-stepping is governed by Dtjkjmax 6 2

ffiffiffi
2
p

(i.e. the extent of the imaginary axis included by the stability region). For
example when h ¼ L=100, strategy BC will require a time step which is approximately 10 times smaller than the one required
for h ¼ L. On the other hand, for strategy BC + LAPLACE the stability requirements are roughly independent of relative water
depth and identical to those given by the periodic domain analysis in [2].

These results were obtained using strategy BC at the bottom boundary, as was also done in [2] to obtain their Figs. 3 and 4,
but the corresponding results using strategy BC + LAPLACE at the bottom are very nearly identical.

4.2. Convergence

Having established that using the ghost point method does not adversely affect stability, we now confirm that it does not
change the convergence properties of the method. To this end, we repeat the analysis of Bingham and Zhang [2, Section 4]
leading up to their Fig. 2, with strategy BC replaced by strategy BC + LAPLACE. Given the linear solution for ~/ ¼ /ðx;0Þ at a
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Maximum eigenvalues of the Jacobian matrix for the two discretization schemes along lateral boundaries as a function of relative water depth.



A.P. Engsig-Karup et al. / Journal of Computational Physics 228 (2009) 2100–2118 2111
fixed value of kh ¼ 4, we compute semi-analytically the value of ~w obtained by the model using increasingly fine resolutions
in x and z. Semi-analytically in the sense that we assume a uniform grid spacing in the x-direction with periodic boundary
conditions which allows the discrete x-derivatives to be expressed in closed form, leaving only the vertical derivatives to be
solved for numerically. The resulting relative errors appear in Fig. 7. This plot shows results obtained using the symmetric
half of a Chebyshev–Gauss–Lobatto grid distribution in the vertical (same as in [2]). Fourth- and sixth-order finite difference
operators (r ¼ 5;7, respectively) have been used. Comparing these results with the corresponding plots from Bingham and
Zhang [2] it is clear that there are only very minor differences and the essential character of convergence is unchanged,
approaching asymptotically the expected rates of fourth- and sixth-order. This leaves open the (unlikely) possibility that
applying strategy BC + LAPLACE at the lateral boundaries could affect the convergence of the method. To verify that this
is not the case, we provide one example of convergence for the full 3D numerical solution in Section 5.1.

We thus conclude that the model converges at the expected rate using both strategy BC and BC + LAPLACE at solid bound-
aries, but that stability is negatively affected by applying strategy BC at the lateral boundaries.

4.3. Linear dispersion and kinematics

We provide here a short discussion of the accuracy of the model with respect to linear dispersion and internal flow kine-
matics. This analysis complements that presented in [2] (their Figs. 5–8) by presenting the results for fixed resolution as a
function of relative water depth kh. The analysis here is done using the BC + LAPLACE strategy at the bottom boundary,
although practically identical results are obtained using strategy BC.

For the linear, periodic solution on a constant depth (21) ~w and ~/ are related by (22) which can be written
Fig. 7.
asympt
~w

k~/
¼ tanhðkhÞ; ð23Þ
which is the non-dimensional linear dispersion operator. Thus, by specifying the exact linear ~/ as a boundary condition, we
use the model to compute the corresponding discrete ~w and compare the non-dimensional result (the left hand side of (23))
with the exact value (the right hand side of (23)) to obtain the error.

Fig. 8 collects the result of this calculation for several choices of spatial discretization. The top two plots show the disper-
sion errors using second-order schemes on a uniform grid (i.e. the model of [14]) with 50 and 150 points per wavelength and
varying numbers of grid points in the vertical. From the first plot it is clear that 50 points per wavelength is not enough to
give an accuracy of better than 10�3 for any but the very longest waves ðkh < 0:5Þ. With 150 points per wavelength however,
a good limiting accuracy can be achieved. The applicable range of kh (at a fixed Nx) can be extended by increasing the number
of points in the vertical.

The lower two plots in Fig. 8 shows similar results using fourth- and sixth-order schemes and a clustered vertical grid
based on the symmetric half of the Chebyshev–Gauss–Lobatto (CBL) nodes. This shows that a similar level of accuracy
can be achieved by using an order of magnitude fewer points in each direction. Since the extra computational effort per grid
point involved in moving from second-order to sixth-order operators is generally a factor of two or less for our solution, 3D
problems can be solved roughly a thousand times more efficiently using high-order operators and a clustered vertical grid
relative to second-order operators on a uniform grid as was also pointed out in [2].

The accuracy of both linear dispersion and the description of the internal flow kinematics is influenced by the choice of
grid distribution in the vertical. To measure the accuracy of the kinematics for a given spatial discretization, we compare the
computed potential /cðzÞ with the exact solution (21) /e at the vertical computational points using the discrete norm
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Fig. 8. Dispersion errors as a function of kh for different resolutions.
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This is illustrated in Fig. 9 for uniform, Chebyshev–Gauss–Lobatto and Legendre–Gauss–Lobatto (LGL) nodes, respectively,
where the symmetric half of the grid points are employed in the two latter cases. The best balance between accuracy in dis-
persion and internal kinematics is obtained using the CBL nodes, so we adopt this vertical grid as our default.

4.4. Energy conservation and nonlinear stability

We conclude this section with a brief discussion of the energy conservation and nonlinear stability properties of the mod-
el. For the linear problem, energy conservation can be inferred from the analysis of Bingham and Zhang [2, Section 4, Figs. 5
and 6]. Since the energy in a wave is proportional to the amplitude squared, the amplitude errors shown there represent the
square root of the error in energy conservation per wave period as a function of resolution.

For the nonlinear problem, we here consider the behavior of the model under the ideal circumstances of a 2D periodic
problem on a constant depth, while in Section 5 a more practical 3D example is given. Under the assumptions of a potential
flow, the total energy in a wave can be expressed as
E ¼ q
2 S0ð~/gt þ gg2Þdxdy; ð25Þ
where S0 is the still water free surface. The first term represents the kinetic energy and the second the potential energy mea-
sured with respect to the fluid at rest. This form of the kinetic energy is obtained by an application of the divergence theorem
to the original volume integral expression, subsequently invoking the Laplace equation and the boundary conditions.

Highly accurate nonlinear, periodic and constant depth waves computed using the method of Fenton [8] will be used to
check energy conservation. We consider a deep water wave with kh ¼ 2p at a height which is 90% of the stable limit,
H=L ¼ 0:1273. This solution provides the initial conditions for g and ~/ in the 2D numerical model with periodic lateral
boundary conditions. The solution is then allowed to propagate for ten wave periods. Sixth-order finite difference operators
are used and the Courant number is fixed at Cr ¼ 0:5. Different resolutions Nx and Nz are considered and the influence of the
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Fig. 9. Relative error in linear dispersion (negative axis) and internal kinematics (positive axis) as a function of kh for different vertical grid distributions and
order of numerical scheme for well-resolved free surface waves. (a) Fourth-order scheme and (b) sixth-order scheme. Grid employed with Nz ¼ 9 nodes in
the vertical and are either uniform (full line), CBL nodes (dashed) and LGL nodes (dotted).
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GMRES convergence tolerance is also investigated. The energy is monitored by evaluating (25). For this periodic problem, a
spectrally accurate evaluation of the integral is obtained by forming the argument at each grid point in the domain and tak-
ing the zero frequency component of it’s Fourier transform.

The results are collected in Fig. 10. Fig. 10(a) shows a snapshot of the initial free surface elevation at t ¼ 0 along with the
final result at t ¼ 10T using a resolution of Nx ¼ 32 and Nz ¼ 9. For these highly nonlinear periodic problems, the calculations
generally break down at some point if the simulation is run long enough. We attribute this to aliasing errors which tend to
accumulate at high frequencies eventually leading to instability. The growth of the instability is slow however and can be
prevented by the occasional application of a low-pass filter to g and ~/. The cleanest way to do this is to apply a top hat filter
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in the frequency domain which sets to zero the last 1/3 of the frequency space and leaves the first 2/3 of the space un-
touched. This is essentially a standard de-aliasing technique for quadratic nonlinear products and it works very well for this
problem. For the general applications that we have in mind however, e.g. when there are structures in the domain and/or the
enclosing boundaries are not rectangular, the required Fourier transform is complicated if not impossible to obtain robustly.
Instead, we have chosen to apply high-order Savitzky–Golay type filters [17] which have a similar behavior but are straight-
forward to apply to logically structured grids.

Fig. 10(b) shows the evolution of the total error in energy during the run using Nx ¼ 64 and Nz ¼ 9. Curves are shown
without filtering and with a 13-point, 10th-order filter applied once per wave period. Clearly this mild level of filtering does
not significantly influence the total energy in the wave, until about five to six periods of propagation, after which the unfil-
tered simulation rapidly breaks down but the filtered solution continues without problems. We thus adopt this filter for all
the test cases discussed here and apply it every 1/4 to one wave period, depending on the resolution. Higher resolution leads
to less total energy error which seems to require more frequent filtering to maintain.

Fig. 10(c) shows the influence of different choices for the GMRES convergence tolerance using Nx ¼ 64, Nz ¼ 9 grid points.
For this case convergence is achieved at a tolerance of 10�10 and the asymptotic level of accuracy in energy conservation is
around 10�4 after 10 periods of propagation. Fig. 10(d) shows convergence of the energy conservation with spacial resolution
at a fixed GMRES convergence tolerance of 10�10. From these results we conclude that the model can satisfy energy conser-
vation to any desired level of accuracy by refinement of the resolution and the GMRES convergence tolerance. Of more prac-
tical interest, we conclude from these results that a resolution of 32 � 9 grid points using sixth-order operators and a
Cr ¼ 0:5 leads to highly accurate solutions and energy losses of less than 10�4 per wave period of propagation for highly non-
linear waves in deep water.

The picture is qualitatively the same in shallow water, although due to the character of these waves more horizontal and
less vertical resolution is required to achieve the same level of accuracy. An example is shown in Fig. 11 which shows a snap-
shot of a wave at 90% of the breaking limit at kh ¼ 0:5, along with the convergence of the energy conservation with grid
resolution.

5. 3D applications

To validate the 3D performance and implementation of the model described and analyzed in 2D above, we consider the
following three test cases: (1) periodic, linear standing waves in a rectangular tank of constant depth; (2) highly nonlinear
monochromatic waves propagating at an angle through a rectangular domain; and (3) nonlinear waves shoaling over a semi-
circular shoal. The first case verifies the expected convergence rate of the model for the linear problem. The second case ver-
ifies that the 3D model is consistent with the 2D analysis of Section 4. The final case tests all the features of the fully non-
linear solution on a variable depth fluid.

5.1. Linear standing waves in a rectangular tank

The exact solution for two-dimensional linear standing waves in a rectangular tank can be expressed as
Fig. 11
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2

c
coshðkðzþ hÞÞ

sinhðkhÞ sinðxtÞ cosðkxxÞ cosðkyyÞ;
ð26Þ
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

η/
H

x/L

Free surface with Nx=64, Nz=9

t=0
t=10T

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 0  2  4  6  8  10

|E
-E

0|
/E

0

t/T

Convergence with (Nx x Nz) at GMRES tol.=1.e-10

512x17
256x9
128x9

64x9
32x9
16x9

a b

. Energy conservation for a nonlinear periodic shallow water wave at kh ¼ 0:5 with H=L ¼ 0:0529 ¼ 90% of breaking. Snapshot of the surface
n and convergence of energy conservation with resolution.



A.P. Engsig-Karup et al. / Journal of Computational Physics 228 (2009) 2100–2118 2115
where the magnitude of the wave number is expressed in terms of the directional wave number components as k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
which must satisfy the linear dispersion relation c2 ¼ g=k tanhðkhÞ, c is the phase velocity, H is the wave height, x is the
angular frequency and h the still-water depth.

A semi-analytical convergence test for the three-dimensional model implementation is carried out to confirm the accu-
racy of the implementation of linear terms using the analytical solution (26) for a fixed value kh ¼ 4. The relative errors are
presented in Fig. 12. The test is similar to the two-dimensional convergence test presented in Section 4.2 which can be used
in a comparison. The relative dispersion errors are comparable for both the two- and three-dimensional cases for a fixed spa-
tial resolution and fixed rank (i.e. order) of finite difference stencils on the clustered grids. This validates the implementation
of the linear terms and confirms that the accuracy of the algorithm is not degraded by the presence of a second horizontal
dimension.

5.2. Propagation of steep regular nonlinear waves in deep water

To demonstrate that the model is able to solve problems with steep nonlinear waves near the breaking limit in 3D, we
generate regular stream function waves [8] with no net mass flux below the wave crest (closed flume assumption) of wave
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length L ¼ 1m, nonlinearity H=L ¼ 90%ðH=LÞmax and in deep water with kh ¼ 2p. The domain is of size 32 � 7.5 � 1 m dis-
cretized by 1025� 257� 10 � 2:6 million grid points. The wave makers are positioned along the boundaries and have a size
of two wave lengths. The waves are generated at an angle incident to the x-axis corresponding to 10�, thus ensuring that the
set-up is three-dimensional. The model is run until a final time of 10 wave periods is reached using sixth-order finite differ-
ence operators in space and a Courant number of Cr ¼ 0:5.

In Fig. 13(a) a snapshot of the final free surface solution is shown. In Fig. 13(b) a graph for the total energy of the fluid
during simulation time is shown. The total energy varies due to the wave incident angle and the visible fluctuating pattern
has a timespan matching the wave periods with the fluctuating mean remaining constant implying that energy is conserved.
In Fig. 13(c) and (d) the computed relative two-norm errors along the coordinate axes are determined using the analytical
solution and are found to be small everywhere.

5.3. Nonlinear waves on a semi-circular shoal

We consider next the experiments of Whalin [20], for which the still water depth is given by (in m)
Fig. 14
T ¼ 2 s
times).
hðxÞ ¼
0:4572; 0 6 x < 10:67� RðyÞ
0:4572þ 1

25 ð10:67� RðyÞ � xÞ; 10:67� RðyÞ 6 x < 18:29� RðyÞ
0:1524; 18:29 6 x

8><
>: ð27Þ
where RðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð6:096� yÞ

p
. The semi-circular shoal region causes the incoming waves (from the deep part) to refract and

focus above and after the shoal. In the original experiment three different wave periods T ¼ 1, 2, 3 s and wave heights
H ¼ 0:0390, 0.0150, 0.0136 m were used for the incident waves. In the numerical model the wave generation and absorption
of these fully nonlinear waves are handled using a line source relaxation method due to Larsen and Dancy [13] and highly
accurate, periodic solutions for the input signal using the method of Fenton [8]. The waves are generated and absorbed in the
region 0 6 x 6 5 m and absorbed in the region 30 6 x 6 35 m for each case of different wave period T ¼ 1, 2, 3 s. For each test
a time step Dt ¼ 0:039 s was used, and the spatial discretizations of the domain were respectively 257� 21� ð6þ 1Þ points
for the T ¼ 2, 3 s cases and 513� 21� ð6þ 1Þ points for the T ¼ 1 s case, which are sufficient to resolve the first three har-
monics everywhere. In each test sixth-order finite difference operators were used.

In Fig. 14, a Fast Fourier Transform (FFT) analysis has been carried out for both the computed and measured results for the
three different experiments considered using both the direct LU (corresponds to a MG scheme with only one grid level) and
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Table 2
Simulation parameters and timing results for experiments of Whalin [20] to reach a final time of tf ¼ 50 s in total 1283 time steps using a formally OðDxp

� Þ
accurate scheme (p is order) in space and fourth-order in time for chosen multigrid preconditioning strategy.

T (s) CPU (hh:mm:ss) Average iteration p Total grids Preconditioning

1 00:21:33 3.92 6th 1 LU
1 01:01:41 5.80 6th 5 MG-1F(1,1)

2 00:07:57 2.51 6th 1 LU
2 00:21:58 4.35 6th 5 MG-1F(1,1)

3 00:06:02 2.44 6th 1 LU
3 00:19:47 4.02 6th 4 MG-1F(1,1)
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the MG-1F(1,1) preconditioning strategies for a numerical scheme which is formally OðDx6
� ;Dt4Þ. For the multigrid solution

five grid levels were used in every case to validate the algorithm. For problems of the given sizes this is choice is sub-optimal
and therefore optimal timings for the direct LU have been included in Table 2 where the simulation times and average iter-
ation counts for each test are presented. Time series of the solution at various points in x along the shoal center line at
y ¼ 3:048 m have been analyzed during the last three wave periods up to the final time of tf ¼ 50 s. Each signal has been
decomposed into its harmonic amplitudes via a least-squares fit to a sum of sines and cosines. The first three harmonics
are in good agreement with the experimental data. The computed results are also in good agreement with other high-accu-
racy numerical results from the literature. These computations were run at the Niflheim cluster at Technical University of
Denmark (DTU) using an AMD Opteron node with two dual-core processors running at 2.6 GHz.

6. Conclusions

An efficient solution scheme for the 3D Laplace problem for nonlinear waves on a variable depth fluid has been developed.
Boundary-fitted coordinates are used to obtain time-constant differential operators which are discretized using arbitrary-or-
der finite difference schemes on a structured, but unevenly spaced grid. The choice of grid distribution in the vertical has an
impact on the accuracy of dispersion and internal flow kinematics and the Chebyshev–Gauss–Lobatto points are found to
give the best balance between the two. A GMRES iterative solution of the resultant linear system of equations leads to opti-
mal scaling of both the solution effort and the memory use with increasing problem size. The key factors for achieving this
result are: a discretization strategy which ensures the satisfaction of both the Laplace equation and the boundary condition
at all solid boundaries; and preconditioning of the iterative solution via one multigrid cycle using the linearized, second-or-
der accurate version of the system matrix. Average iteration counts are typically less than 10, and the solution is found to be
robust for general nonlinear wave problems, with no need for additional smoothing or filtering over that imposed naturally
by the finite difference schemes.

Future efforts are directed toward parallelization of the algorithm to allow larger problems to be treated, and extension of
the method to allow more flexibility in representing the geometry of the solid boundaries of the fluid domain. This involves
extending the current algorithm to support domain decomposition with conforming blocks communicating through ficti-
tious ghost point layers, and the extension of the scheme to general curvilinear boundary-fitted coordinates in the horizontal
directions.
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